This special issue collects a selection of peer-review papers presented at the 8th International Conference INPUT 2014 titled “Smart City: planning for energy, transportation and sustainability of urban systems”, held on 4-6 June in Naples, Italy. The issue includes recent developments on the theme of relationship between innovation and city management and planning.

TeMA is the Journal of Land use, Mobility and Environment and offers papers with a unified approach to planning and mobility. TeMA Journal has also received the Sparc Europe Seal of Open Access Journals released by Scholarly Publishing and Academic Resources Coalition (SPARC Europe) and the Directory of Open Access Journals (DOAJ).
SMART CITY

PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM

Special Issue, June 2014

Published by
Laboratory of Land Use Mobility and Environment
DICEA - Department of Civil, Architectural and Environmental Engineering
University of Naples "Federico II"

TeMA is realised by CAB - Center for Libraries at "Federico II" University of Naples using Open Journal System

Editor-in-chief: Rocco Papa
print ISSN 1970-9889 | on line ISSN 1970-9870
Licence: Cancelleria del Tribunale di Napoli, n° 6 of 29/01/2008

Editorial correspondence
Laboratory of Land Use Mobility and Environment
DICEA - Department of Civil, Architectural and Environmental Engineering
University of Naples "Federico II"
Piazzale Tecchio, 80
80125 Naples
web: www.tema.unina.it
e-mail: redazione.tema@unina.it
TeMA. Journal of Land Use, Mobility and Environment offers researches, applications and contributions with a unified approach to planning and mobility and publishes original inter-disciplinary papers on the interaction of transport, land use and environment. Domains include engineering, planning, modeling, behavior, economics, geography, regional science, sociology, architecture and design, network science, and complex systems.

The Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR) classified TeMA as scientific journals in the Areas 08. TeMA has also received the Sparc Europe Seal for Open Access Journals released by Scholarly Publishing and Academic Resources Coalition (SPARC Europe) and the Directory of Open Access Journals (DOAJ). TeMA is published under a Creative Commons Attribution 3.0 License and is blind peer reviewed at least by two referees selected among high-profile scientists by their competences. TeMA has been published since 2007 and is indexed in the main bibliographical databases and it is present in the catalogues of hundreds of academic and research libraries worldwide.

EDITOR- IN-CHIEF

Rocco Papa, Università degli Studi di Napoli Federico II, Italy

EDITORIAL ADVISORY BOARD

Luca Bertolini, Universiteit van Amsterdam, Netherlands
Virgilio Bettini, Università luav di Venezia, Italy
Dino Borri, Politecnico di Bari, Italy
Enrique Calderon, Universidad Politécnica de Madrid, Spain
Roberto Camagni, Politecnico di Milano, Italy
Robert Leonardi, London School of Economics and Political Science, United Kingdom
Raffaella Nanetti, College of Urban Planning and Public Affairs, United States
Agostino Nuzzolo, Università degli Studi di Roma Tor Vergata, Italy
Rocco Papa, Università degli Studi di Napoli Federico II, Italy

EDITORS

Agostino Nuzzolo, Università degli Studi di Roma Tor Vergata, Italy
Enrique Calderon, Universidad Politécnica de Madrid, Spain
Luca Bertolini, Universiteit van Amsterdam, Netherlands
Romano Fistola, Dept. of Engineering - University of Sannio - Italy
Adriana Galderisi, Università degli Studi di Napoli Federico II, Italy
Carmela Gargiulo, Università degli Studi di Napoli Federico II, Italy
Giuseppe Mazzeo, CNR - Istituto per gli Studi sulle Società del Mediterraneo, Italy

EDITORIAL SECRETARY

Rosaria Battarra, CNR - Istituto per gli Studi sulle Società del Mediterraneo, Italy
Andrea Ceudech, TeMALab, Università degli Studi di Napoli Federico II, Italy
Rosa Anna La Rocca, TeMALab, Università degli Studi di Napoli Federico II, Italy
Enrica Papa, University of Amsterdam, Netherlands
This special issue of TeMA collects the papers presented at the 8th International Conference INPUT 2014 which will take place in Naples from 4th to 6th June. The Conference focuses on one of the central topics within the urban studies debate and combines, in a new perspective, researches concerning the relationship between innovation and management of city changing.

CONFERENCE COMMITTEE

Dino Borri, Polytechnic University of Bari, Italy
Arnaldo Cecchini, University of Sassari, Italy
Romano Fistola, University of Sannio, Italy
Lilli Gargiulo, University of Naples Federico II, Italy
Giuseppe B. Las Casas, University of Basilicata, Italy
Agostino Nuzzolo, University of Rome, Italy
Rocco Papa, University of Naples Federico II, Italy
Giovanni Rabino, Polytechnic University of Milan, Italy
Maurizio Tira, University of Brescia, Italy
Corrado Zoppi, University of Cagliari, Italy

SCIENTIFIC COMMITTEE

Emanuela Abis, University of Cagliari, Italy
Nicola Bellini, Institute of Management, Scuola Superiore Sant'Anna Pisa, Italy
Mariolina Besio Dominici, University of Genoa, Italy
Ivan Blecic, University of Sassari, Italy
Dino Borri, Polytechnic University of Bari, Italy
Grazia Brunetta, Polytechnic University of Turin, Italy
Roberto Busi, University of Brescia, Italy
Domenico Camarda, Polytechnic University of Bari, Italy
Michele Campagna, University of Cagliari, Italy
Arnaldo Cecchini, University of Sassari, Italy
Donatella Cialdea, University of Molise, Italy
Valerio Cutini, University of Pisa, Italy, Italy
Luciano De Bonis, University of Molise, Italy
Andrea De Montis, University of Sassari, Italy
Filippo de Rossi, University of Sannio (Dean of the University of Sannio), Italy
Lidia Diappi, Polytechnic University of Milan, Italy
Isidoro Fasolino, University of Salerno, Italy
Mariano Gallo, University of Sannio, Italy
Lilli Gargiulo, University of Naples Federico II, Italy
Roberto Gerundo, University of Salerno, Italy
Paolo La Greca, University of Catania, Italy
Giuseppe B. Las Casas, University of Basilicata, Italy
Robert Laurini, University of Lyon, France
Antonio Leone, Tuscia University, Italy
Anna Loffredo, Institute of Management, Scuola Superiore Sant'Anna Pisa, Italy
Silvana Lombardo, University of Pisa, Italy
Giovanni Maciocco, University of Sassari, Italy
Giulio Maternini, University of Brescia, Italy
Francesco Domenico Moccia, University of Naples Federico II, Italy
Bruno Montella, University of Naples “Federico II” (Director of DICEA), Italy
Beniamino Murgante, University of Basilicata, Italy
Agostino Nuzzolo, University of Rome, Italy
Sylvie Occelli, IRES Turin, Italy
Rocco Papa, University of Naples Federico II, Italy
Maria Paradiso, University of Sannio, Italy
Domenico Patassini, IUAV, Venice, Italy
Michele Pezzagno, University of Brescia, Italy
Fulvia Pinto, Polytechnic University of Milan, Italy
Giovanni Rabino, Polytechnic University of Milan, Italy
Giuseppe Roccasalva, Polytechnic University of Turin, Italy
Bernardino Romano, University of L’Aquila, Italy
Francesco Russo, Mediterranean University Reggio Calabria, Italy
Michelangelo Russo, University of Naples Federico II, Italy
Ferdinando Semboloni, University of Firenze, Italy
Agata Spaziante, Polytechnic University of Turin, Italy
Michela Tiboni, University of Brescia, Italy
Maurizio Tira, University of Brescia, Italy
Simona Tondelli, University of Bologna, Italy
Umberto Villano, University of Sannio (Director of DING), Italy
Ignazio Vinci, University of Palermo, Italy
Corrado Zoppo, University of Cagliari, Italy

LOCAL SCIENTIFIC COMMITTEE

Rosaria Battarra, ISSM, National Research Council, Italy
Romano Fistola, DING, University of Sannio, Italy
Lilli Gargiulo, DICEA, University of Naples Federico II, Italy
Adriana Galderisi, DICEA, University of Naples Federico II, Italy
Rosa Anna La Rocca, DICEA, University of Naples Federico II, Italy
Giuseppe Mazzeo, ISSM, National Research Council, Italy
Enrica Papa, University of Amsterdam, Netherlands

LOCAL ADMINISTRATIVE TEAM

Gennaro Angiello, TeMA Lab, University of Naples Federico II, Italy
Gerardo Carpentieri, TeMA Lab, University of Naples Federico II, Italy
Stefano Franco, TeMA Lab, University of Naples Federico II, Italy
Laura Russo, TeMA Lab, University of Naples Federico II, Italy
Floriana Zucaro, TeMA Lab, University of Naples Federico II, Italy
EIGHTH INTERNATIONAL CONFERENCE INPUT 2014

SMART CITY. PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM

This special issue of TeMA collects the papers presented at the Eighth International Conference INPUT, 2014, titled "Smart City. Planning for energy, transportation and sustainability of the urban system" that takes place in Naples from 4 to 6 of June 2014.

INPUT (Innovation in Urban Planning and Territorial) consists of an informal group/network of academic researchers Italians and foreigners working in several areas related to urban and territorial planning. Starting from the first conference, held in Venice in 1999, INPUT has represented an opportunity to reflect on the use of Information and Communication Technologies (ICTs) as key planning support tools. The theme of the eighth conference focuses on one of the most topical debate of urban studies that combines, in a new perspective, researches concerning the relationship between innovation (technological, methodological, of process etc..) and the management of the changes of the city. The Smart City is also currently the most investigated subject by TeMA that with this number is intended to provide a broad overview of the research activities currently in place in Italy and a number of European countries. Naples, with its tradition of studies in this particular research field, represents the best place to review progress on what is being done and try to identify some structural elements of a planning approach.

Furthermore the conference has represented the ideal space of mind comparison and ideas exchanging about a number of topics like: planning support systems, models to geo-design, qualitative cognitive models and formal ontologies, smart mobility and urban transport, Visualization and spatial perception in urban planning innovative processes for urban regeneration, smart city and smart citizen, the Smart Energy Master project, urban entropy and evaluation in urban planning, etc..

The conference INPUT Naples 2014 were sent 84 papers, through a computerized procedure using the website www.input2014.it. The papers were subjected to a series of monitoring and control operations. The first fundamental phase saw the submission of the papers to reviewers. To enable a blind procedure the papers have been checked in advance, in order to eliminate any reference to the authors. The review was carried out on a form set up by the local scientific committee. The review forms received were sent to the authors who have adapted the papers, in a more or less extensive way, on the base of the received comments. At this point (third stage), the new version of the paper was subjected to control for to standardize the content to the layout required for the publication within TeMA. In parallel, the Local Scientific Committee, along with the Editorial Board of the magazine, has provided to the technical operation on the site TeMA (insertion of data for the indexing and insertion of pdf version of the papers). In the light of the time's shortness and of the high number of contributions the Local Scientific Committee decided to publish the papers by applying some simplifies compared with the normal procedures used by TeMA. Specifically:

- Each paper was equipped with cover, TeMA Editorial Advisory Board, INPUT Scientific Committee, introductory page of INPUT 2014 and summary;
- Summary and sorting of the papers are in alphabetical order, based on the surname of the first author;
- Each paper is indexed with own DOI codex which can be found in the electronic version on TeMA website (www.tema.unina.it). The codex is not present on the pdf version of the papers.
SMART CITY
PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM
Special Issue, June 2014

Contents

 Fabio Andreassi, Pierluigi Properzi
 1-13

 Grazielle Anjos Carvalho
 15-26

3. Temporary Dwelling of Social Housing in Turin. New Responses to Housing Discomfort
 Giulia Baù, Luisa Ingaramo
 27-37

4. Smart Communities. Social Innovation at the Service of the Smart Cities
 Massimiliano Bencardino, Ilaria Greco
 39-51

 Ivan Blečić, Dario Canu, Arnaldo Cecchini, Giuseppe Andrea Trunfio
 53-63

 Ivan Blečić, Arnaldo Cecchini, Tanja Congiu, Giovanna Fancello, Giuseppe Andrea Trunfio
 65-76

7. Diachronic Analysis of Parking Usage: The Case Study of Brescia
 Riccardo Bonotti, Silvia Rossetti, Michela Tiboni, Maurizio Tira
 77-85

8. Crowdsourcing. A Citizen Participation Challenge
 Júnia Borges, Camila Zyncier
 87-96

 Júnia Borges, Camila Zyncier, Karen Lourenço, Jonatha Santos
 97-108
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>Dilemmas in the Analysis of Technological Change. A Cognitive Approach to Understand Innovation and Change in the Water Sector</td>
<td>Dino Borri, Laura Grassini</td>
<td>109-127</td>
</tr>
<tr>
<td>11.</td>
<td>Learning and Sharing Technology in Informal Contexts. A Multiagent-Based Ontological Approach</td>
<td>Dino Borri, Domenico Camarda, Laura Grassini, Mauro Patano</td>
<td>129-140</td>
</tr>
<tr>
<td>13.</td>
<td>Beyond Defining the Smart City. Meeting Top-Down and Bottom-Up Approaches in the Middle</td>
<td>Jonas Breuer, Nils Walravens, Pieter Ballon</td>
<td>153-164</td>
</tr>
<tr>
<td>15.</td>
<td>ITS System to Manage Parking Supply: Considerations on Application to the “Ring” in the City of Brescia</td>
<td>Susanna Bulferetti, Francesca Ferrari, Stefano Riccardi</td>
<td>175-186</td>
</tr>
<tr>
<td>17.</td>
<td>Geodesign From Theory to Practice: In the Search for Geodesign Principles in Italian Planning Regulations</td>
<td>Michele Campagna, Elisabetta Anna Di Cesare</td>
<td>199-210</td>
</tr>
<tr>
<td>18.</td>
<td>Geodesign from Theory to Practice: From Metaplanning to 2nd Generation of Planning Support Systems</td>
<td>Michele Campagna</td>
<td>211-221</td>
</tr>
<tr>
<td>19.</td>
<td>The Energy Networks Landscape. Impacts on Rural Land in the Molise Region</td>
<td>Donatella Cialdea, Alessandra Maccarone</td>
<td>223-234</td>
</tr>
<tr>
<td>20.</td>
<td>Marginality Phenomena and New Uses on the Agricultural Land. Diachronic and Spatial Analyses of the Molise Coastal Area</td>
<td>Donatella Cialdea, Luigi Mastronardi</td>
<td>235-245</td>
</tr>
<tr>
<td>21.</td>
<td>Spatial Analysis of Urban Squares. ‘Siccome Umbellico al corpo dell’uomo’</td>
<td>Valerio Cutini</td>
<td>247-258</td>
</tr>
</tbody>
</table>
22. Co-Creative, Re-Generative Smart Cities.
 Smart Cities and Planning in a Living Lab Perspective 2
 Luciano De Bonis, Grazia Concilio, Eugenio Leanza, Jesse Marsh, Ferdinando Trapani
 259-270

23. The Model of Voronoi’s Polygons and Density:
 Diagnosis of Spatial Distribution of Education Services of EJA
 in Divinópolis, Minas Gerais, Brazil
 Diogo De Castro Guadalupe, Ana Clara Mourão Moura
 271-283

 Roberto De Lotto, Tiziano Cattaneo, Cecilia Morelli Di Popolo, Sara Morettini,
 Susanna Sturla, Elisabetta Venco
 285-295

25. Landscape Planning and Ecological Networks.
 Part A. A Rural System in Nuoro, Sardinia
 Andrea De Montis, Maria Antonietta Bardi, Amedeo Ganciu, Antonio Ledda,
 Simone Caschili, Maurizio Mulas, Leonarda Dessena, Giuseppe Modica,
 Luigi Laudari, Carmelo Riccardo Fichera
 297-307

26. Landscape Planning and Ecological Networks.
 Part B. A Rural System in Nuoro, Sardinia
 Andrea De Montis, Maria Antonietta Bardi, Amedeo Ganciu, Antonio Ledda,
 Simone Caschili, Maurizio Mulas, Leonarda Dessena, Giuseppe Modica,
 Luigi Laudari, Carmelo Riccardo Fichera
 309-320

27. Sea Guidelines. A Comparative Analysis: First Outcomes
 Andrea De Montis, Antonio Ledda, Simone Caschili, Amedeo Ganciu, Mario Barra,
 Gianluca Cocco, Agnese Marcus
 321-330

 Studies for a Method of Analysis of Urban Periphery
 Paolo De Pascali, Valentina Alberti, Daniela De Ioris, Michele Reginaldi
 331-339

 The Approach of the Transform Project
 Ilaria Delponte
 341-351

30. From a Smart City to a Smart Up-Country.
 The New City-Territory of L’Aquila
 Donato Di Ludovico, Pierluigi Properzi, Fabio Graziosi
 353-364

 Interactive Tool for Urban Planning
 Enrico Eynard, Marco Santangelo, Matteo Tabasso
 365-375
	The Case of Out-of-Scale Buildings	
	Enrico Fabrizio, Gabriele Garnero	
33.	Smart Dialogue for Smart Citizens:	389-401
	Assertive Approaches for Strategic Planning	
	Isidoro Fasolino, Maria Veronica Izzo	
34.	Digital Social Networks and Urban Spaces	403-415
	Pablo Vieira Florentino, Maria Célia Furtado Rocha, Gilberto Corso Pereira	
35.	Social Media Geographic Information in Tourism Planning	417-430
	Roberta Floris, Michele Campagna	
36.	Re-Use/Re-Cycle Territories:	431-440
	A Retroactive Conceptualisation for East Naples	
	Enrico Formato, Michelangelo Russo	
37.	Urban Land Uses and Smart Mobility	441-452
	Mauro Francini, Annunziata Palermo, Maria Francesca Viapiana	
38.	The Design of Signalised Intersections at Area Level.	453-464
	Models and Methods	
	Mariano Gallo, Giuseppina De Luca, Luca D’acierno	
	Roberto Gerundo, Gabriella Graziuso	
40.	Social Housing in Urban Regeneration.	477-486
	Regeneration Heritage Existing Building: Methods and Strategies	
	Maria Antonia Giannino, Ferdinando Orabona	
41.	Using GIS to Record and Analyse Historical Urban Areas	487-497
	Maria Giannopoulou, Athanasios P. Vavatsikos, Konstantinos Lykostratis, Anastasia Roukouni	
42.	Network Screening for Smarter Road Sites: A Regional Case	499-509
	Attila Grieco, Chiara Montaldo, Sylvie Occelli, Silvia Tarditi	
43.	Li-Fi for a Digital Urban Infrastructure:	511-522
	A Novel Technology for the Smart City	
	Corrado Iannucci, Fabrizio Pini	
44.	Open Spaces and Urban Ecosystem Services.	523-534
	Cooling Effect towards Urban Planning in South American Cities	
	Luis Inostroza	
45. From RLP to SLP: Two Different Approaches to Landscape Planning
 Federica Isola, Cheti Pira

46. Revitalization and its Impact on Public. Space Organization
 A Case Study of Manchester in UK, Lyon in France and Łódź in Poland
 Jaroslaw Kazimierczak

47. Geodesign for Urban Ecosystem Services
 Daniele La Rosa

48. An Ontology of Implementation Plans of Historic Centers:
 A Case Study Concerning Sardinia, Italy
 Sabrina Lai, Corrado Zoppi

49. Open Data for Territorial Specialization Assessment.
 Territorial Specialization in Attracting Local Development Funds:
 an Assessment. Procedure Based on Open Data and Open Tools
 Giuseppe Las Casas, Silvana Lombardo, Beniamino Murgante,
 Piergiuseppe Pontrandolfi, Francesco Scorza

50. Sustainability And Planning.
 Thinking and Acting According to Thermodynamics Laws
 Antonio Leone, Federica Gobattoni, Raffaele Pelerosso

51. Strategic Planning of Municipal Historic Centers.
 A Case Study Concerning Sardinia, Italy
 Federica Leone, Corrado Zoppi

52. A GIS Approach to Supporting Nightlife Impact Management:
 The Case of Milan
 Giorgio Limonta

53. Dealing with Resilience Conceptualisation. Formal Ontologies as a Tool
 for Implementation of Intelligent Geographic Information Systems
 Giampiero Lombardini

54. Social Media Geographic Information:
 Recent Findings and Opportunities for Smart Spatial Planning
 Pierangelo Massa, Michele Campagna

 Inductive Recharge System Planning in Urban Areas
 Giulio Maternini, Stefano Riccardi, Margherita Cadei
56. Urban Labelling: Resilience and Vulnerability as Key Concepts for a Sustainable Planning
 Giuseppe Mazzeo

57. Defining Smart City. A Conceptual Framework Based on Keyword Analysis
 Farnaz Mosannenzadeh, Daniele Vettorato

58. Parametric Modeling of Urban Landscape: Decoding the Brasilia of Lucio Costa from Modernism to Present Days
 Ana Clara Moura, Suellen Ribeiro, Isadora Correa, Bruno Braga

59. Smart Mediterranean Logics. Old-New Dimensions and Transformations of Territories and Cities-Ports in Mediterranean
 Emanuela Nan

60. Mapping Smart Regions. An Exploratory Approach
 Sylvie Occelli, Alessandro Sciullo

61. Planning Un-Sustainable Development of Mezzogiorno. Methods and Strategies for Planning Human Sustainable Development
 Ferdinando Orabona, Maria Antonia Giannino

 Rocco Papa, Carmela Gargiulo, Gennaro Angiello

63. Integrated Urban System and Energy Consumption Model: Residential Buildings
 Rocco Papa, Carmela Gargiulo, Gerardo Carpentieri

64. Integrated Urban System and Energy Consumption Model: Public and Singular Buildings
 Rocco Papa, Carmela Gargiulo, Mario Cristiano

65. Urban Smartness Vs Urban Competitiveness: A Comparison of Italian Cities Rankings
 Rocco Papa, Carmela Gargiulo, Stefano Franco, Laura Russo

 Rocco Papa, Carmela Gargiulo, Floriana Zucaro

67. Climate Change and Energy Sustainability. Which Innovations in European Strategies and Plans
 Rocco Papa, Carmela Gargiulo, Floriana Zucaro
68. Bio-Energy Connectivity And Ecosystem Services.
An Assessment by Pandora 3.0 Model for Land Use Decision Making 805-816
Raffaele Pelorosso, Federica Gobattoni, Francesco Geri, Roberto Monaco, Antonio Leone

69. Entropy and the City. GHG Emissions Inventory:
a Common Baseline for the Design of Urban and Industrial Ecologies 817-828
Michele Pezzagno, Marco Rosini

70. Urban Planning and Climate Change: Adaptation and Mitigation Strategies 829-840
Fulvia Pinto

71. Urban Gaming Simulation for Enhancing Disaster Resilience.
A Social Learning Tool for Modern Disaster Risk Management 841-851
Sarunwit Promsaka Na Sakonakron, Pongpisit Huyakorn, Paola Rizzi

72. Visualisation as a Model. Overview on Communication Techniques in Transport and Urban Planning 853-862
Giovanni Rabino, Elena Masala

73. Ontologies and Methods of Qualitative Research in Urban Planning 863-869
Giovanni Rabino

74. City/Sea Searching for a New Connection.
Regeneration Proposal for Naples Waterfront Like an Harbourscape: Comparing Three Case Studies 871-882
Michelangelo Russo, Enrico Formato

75. Sensitivity Assessment. Localization of Road Transport Infrastructures in the Province of Lucca 883-895
Luisa Santini, Serena Pecori

76. Creating Smart Urban Landscapes.
A Multimedia Platform for Placemaking 897-907
Marichela Sepe

77. Virtual Power Plant. Environmental Technology Management Tools of The Settlement Processes 909-920
Maurizio Sibilla

78. Ecosystem Services and Border Regions.
Case Study from Czech – Polish Borderland 921-932
Marcin Spyra

79. The Creative Side of the Reflective Planner. Updating the Schön’s Findings 933-940
Maria Rosaria Stufano Melone, Giovanni Rabino
80. Achieving People Friendly Accessibility.
Key Concepts and a Case Study Overview
Michela Tiboni, Silvia Rossetti

941-951

81. Planning Pharmacies: An Operational Method to Find the Best Location
Simona Tondelli, Stefano Fatone

953-963

82. Transportation Infrastructure Impacts Evaluation:
The Case of Egnatia Motorway in Greece
Athanasios P. Vavatsikos, Maria Giannopoulou

965-975

83. Designing Mobility in a City in Transition.
Challenges from the Case of Palermo
Ignazio Vinci, Salvatore Di Dio

977-988

84. Considerations on the Use of Visual Tools in Planning Processes:
A Brazilian Experience
Camila Zyngier, Stefano Pensa, Elena Masala

989-998
MAPPING SMART REGIONS
AN EXPLORATORY APPROACH

SYLVIE OCCELLI, ALESSANDRO SCIULLO

IRES- Istituto di Ricerche Economico Sociali del Piemonte, Via Nizza 18,
10125 Turin, Italy
e-mail: occelli@ires.piemonte.it, sciullo@ires.piemonte.it

ABSTRACT
The paper presents the results of an exploratory approach aimed at extending the ranking procedures normally used in studying the socioeconomics determinants of smart growth at the regional level. Most of these studies adopt a methodological procedure which essentially consists of the following steps: a) identification of the pertinent elementary indicators according to the study objectives; b) data selection and processing; c) combination of the elementary indicators by multivariate statistical techniques aimed at obtaining a robust synthetic index to rank the observation units.

In the procedure a relational dimension is mainly subsumed in the system oriented perspective adopted in selecting the indicators which would best represent the system determinants depending on the goals of the analysis (step a).

In order to get deeper insights into the smartness profile of the European regions, this study makes an effort to account of the relational dimension also in steps b and c of the procedure. The novelties of the proposed approach are twofold. First, by computing region-to-region distances associated with the selected indicators it extends the conventional ranking procedure (step c). Second, it uses a relational database (step b), dealing with the regional participation to the FP7-ICT project, to modify the distances and investigate its impact on the interpretation of the regional positioning.

The main results of this exercise seem to suggest that regional collaborations would have a positive role in regional convergence process. By providing an opportunity to get contacts with the areas endowed with a comparatively more robust smartness profile, regions may have a chance to enhance their own smartness profile.

KEYWORDS
Regional smart growth, region-to-region distances, regional collaboration, regional performance indices.
1 INTRODUCTION: CONCEPTUAL REMARKS AND AIMS OF THE STUDY

Smartness has become the latest fix in urban and regional studies. In Europe, its popularity owes a lot to the EU 2020 strategy which gave a shake to usual ways to view cities and regions. Eventually, it spurred stimuli to revise conventional thinking about how well behaved notions such as built places, living conditions, information flows, ICT networks and sustainable path of growth stick together and make sense in the everyday life of ordinary people as well as in stakeholders’ decision-making.

Broadly speaking, smartness is perceived as a necessary attribute of almost every components and processes meant to set up, by means of modern ICT devices, pro-active and open innovation territorial systems, allowing for greater involvement of more educated and ICT connected people. This notion basically underpins the working definition for smart city lately proposed by the European Union (2014): ‘A Smart City is a city seeking to address public issues via ICT-based solutions on the basis of a multi-stakeholder, municipally based partnership’ (p.9)

When viewed in the light of the most recent arguments about the evolution of spatial systems, such as cities and regions (Batty, 2013, Portugali, 2000), however, smartness is but an “emergent” property, which results from the complex intertwine of many different cognizant agents, operating in a situated context. Not unexpectedly, therefore, statements about smart territory require to discuss both the its conceptual understanding and descriptive account, as well as the observer’s goal in leveraging that very notion. Making explicit the last aspect, in fact, seems to be what fundamentally distinguishes the current conceptualization efforts from earlier ones which had to deal with different although equally relevant urban and spatial issues.

This undertaking mobilizes an additional and so far largely overlooked perspective, which has to do with the ability of an urban/regional system to develop, thanks to the dramatic progress of ICTs, a so called reflective perspective (see Occelli, 2012) and whose underlying dimension is intrinsically relational. Such a dimension in fact relies on the joint consideration of: a) the ways agents, both as observers and as active participants in the community life interact with and perceive the different components of territorial smartness; b) the acknowledgement of the systemic (networked) nature of the bundle of elementary components which concur to qualify a certain level of smartness.

The former aspect has been recently addressed in a study which argues how by engaging in a learning process which leverages different observation windows, a regional system could acquire new capability and therefore achieve higher smartness levels (Occelli, Poggio and Sciullo, 2013).

The latter topic is at the core of many studies conducted by the Directorates of the European Commission to provide a global (European) perspective for assessing, at the regional level, the various socioeconomic determinants of smart growth (see for example Annoni and Dijkstra, 2013, Charron, Dijkstra and Lapuente, 2014, Hollanders, Rivera and Roman, 2012, Soete, 2011). In this respect, the progress made by some of these institutions for making easier the online access of comparative indicators as well as of the original data (as, for example, in the case of the Digital Agenda dash board, www.digital.agenda.eu) is certainly to be appreciated.

The core approach of most of these studies relies on a methodological procedure which essentially consists of the following steps: a) identification of the pertinent elementary indicators according to the study objectives; b) data selection and processing to implement the selected indicators for the observation units (e.g. regions, cities); c) combination of the elementary indicators by multivariate statistical techniques aimed at obtaining a robust synthetic index to rank the observation units.
It is worth noting that in such a procedure the relational dimension is mainly subsumed in the system oriented perspective adopted in selecting the indicators which would best represent the system determinants depending on the goals of the analysis (step a).

In order to get deeper insights into the smartness profile of the European regions, this study makes an effort to account of the relational dimension also in steps b and c of the procedure. In the following, section 2 describes the methodological approach which has been developed. Its novelties are twofold. First, by computing region-to-region distances associated with the selected indicators it extends the conventional ranking procedure (step c). Second, it uses a relational database (step b), dealing with the regional participation to the FP7-ICT project, to modify the distances and investigate its impact on the interpretation of the regional positioning. Section 3 presents the main results of the exploratory analysis and section 4 makes some conclusive remarks.

2 METHODOLOGICAL APPROACH

The main goal of the approach is to enrich the traditional ranking approach typically used to position European regions. More specifically it aims at extending the utilization of a synthetic index of regional performances by considering region-to-region distances, which in this application are derived from processing a set of indicators representing the regional smartness profile.

The approach builds upon earlier studies which were carried at Ires Piemonte also as a part of the activities of the Piedmont ICT Observatory (IRES, 2013, PICTO, 2013). In those studies, a lot of works has been done to identify and implement measurement indicators allowing for a meaningful account of the Piedmont smart growth profile, at both national and European level. The present analysis takes advantage of the experience gained in those studies and focuses on a set of indicators, selected according to a twofold criterion of regional coverage and temporal updating.

2.1 INDICATOR SELECTIONS

The 266 NUTS2 regions belonging to the EU28 member states are investigated. The indicator set consists of 9 elementary indicators, shown Tab.1, organized by three main descriptive profiles of regional smartness: absorptive capacity, innovation system and digital agenda (see, PICTO, 2013).

It is worth noting that the indicator set is rather heterogeneous, both as type of variables included and temporal reference, i.e. the digital agenda profile being the only one recently updated.

To provide comparable measures, the elementary indicators have been normalized between 0 and 1000, by using a MIN-MAX formula. Regional synthetic indices have then been computed by applying two different techniques:

- Simple Averages of the set of normalized elementary indicators. The resulting Synthetic Index is used for ranking the regions;
- Principal Component Analysis, carried out with the STATA software package. Representative indices for the analytic profiles are derived, which are used for computing region-to-region distances among regions (this operation mainly refers to step c of the core approach mentioned in the introduction).1

1 The PCs for the Absorptive Capacity and Innovation System profiles accounts for 94 % of the variance of the original indicators. The PCA for the Digital Agenda profile accounts for about 78%.
Tab.1 List of indicators by analytic profile

<table>
<thead>
<tr>
<th>PROFILE</th>
<th>INDICATORS AND MEASUREMENT UNITS</th>
<th>PIEDMONT</th>
<th>ITALY</th>
<th>EU28</th>
<th>YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorptive capacity</td>
<td>A. First and second stage of tertiary education attainment (ISCED 5 and 6) - % of total</td>
<td>15,1</td>
<td>15,7</td>
<td>27,6</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>B. Human Resources in Science and Technology (HRST total)(^2) - % of total population 15-74 y</td>
<td>21,9</td>
<td>21,2</td>
<td>30,3</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>C. Human Resources in Science and Technology (HRST core) - % of total population 15-74 y</td>
<td>7,3</td>
<td>7,0</td>
<td>12,1</td>
<td>2012</td>
</tr>
<tr>
<td>Innovation System</td>
<td>D. Total R&D personnel and researchers - % of active population</td>
<td>1,13</td>
<td>0,91</td>
<td>1,08</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>E. Total intramural R&D Expenditure - % of GDP</td>
<td>1,88</td>
<td>1,25</td>
<td>2,04</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>F. Patents application to the European Patent Office – per million of inhabitants</td>
<td>105,3</td>
<td>72,4</td>
<td>111,4</td>
<td>2009</td>
</tr>
<tr>
<td>Digital Agenda</td>
<td>G. Household with broadband access - % of households</td>
<td>65</td>
<td>68</td>
<td>79</td>
<td>2013</td>
</tr>
<tr>
<td></td>
<td>H. Individuals regularly using the Internet (at least once a week) - % of individuals</td>
<td>57</td>
<td>56</td>
<td>72</td>
<td>2013</td>
</tr>
<tr>
<td></td>
<td>I. Individuals who ordered goods or services for private use - % of individuals</td>
<td>19</td>
<td>20</td>
<td>47</td>
<td>2013</td>
</tr>
</tbody>
</table>

2.2 CALCULATING THE REGIONAL DISTANCES

The notion of distance is here understood as a two by two measure of regional dissimilarities for a set of selected indicators. In this case, the regional distances are based on the PCA values associated with the three analytic profiles. Let X\(_{ij}\) be the indicator matrix, where \(i\) indicates the region (\(i=1, I, \ldots N, \) where \(N=266\)) and \(j\) represents the PC value for an analytic profile (\(j=1, \ldots K\), with \(K=3\)). Each element, \(d_{il}\) of the \(D_{il}\) regional distance matrix is calculated as:

\[
d_{il} = \sum_{j=1}^{K} (X_{ij} - X_{lj})^2 / K
\]

To visualize the \(D_{ii}\) matrix in a 2-dimensional space a Multidimensional Scaling metric iterative algorithm has been applied using the UCINET software package. This technique permits to map the \(N\times N\) distance values in a 2-dimensional space in such a way that the original distances among regions are preserved as well as possible. Besides making it possible to visualize the original data, the mapping allows us to have a more effective representation of the positioning of regions within the overall European regional space.

\(^2\) HRST is defined according to the Canberra Manual as a person fulfilling at least one of the following conditions: Qualified (successfully completed education at the third level in a S&T field of study; Employed (not formally qualified as above, but employed in a S&T occupation where the above qualifications are normally required). The conditions of the above educational or occupational requirements are considered according to internationally harmonized standards (ISCED and ISCO). The HRST TOTAL indicator measures the percentage of persons qualified OR employed in S&T; the HRST CORE indicator measures the percentage of persons qualified AND employed in S&T.
2.3 Updating Regional Distance by Relational Data

A strong assumption made in this study is that collaborations or partnerships among regions, whereby these are relational entities by definition, may reduce the regional distances, which in this application, are based on regional structural determinants.

To explore the impact of such an assumption, we made reference to the network of regional collaboration, obtained from the database which records the participations to the FP7-ICT projects (European Commission, 2013)\(^3\).

Operationally, each cell of the \(D_i\) matrix (1) has been multiplied by a coefficient, \(c_{ij}\), calculated from the matrix of regional partnerships in FP7-ICT projects as follows:

\[
c_{ij} = \frac{1}{1 + \ln (1 + p_{ij})}
\]

where \(p_{ij}\) is the number of regional collaborations established in the FP7-ICT projects. From (2) a new distance matrix, \(E_D_{ij}\), is obtained which can be processed to provide and a new visualization of the European regional space.

Making reference to the approach mentioned in the introduction, it is worth underlining that this operation can be viewed as a refinement step b of the procedure.

3 MAIN RESULTS

Table 1 lists the best and worst performing regions according to the Synthetic Index. It also displays the values of both the elementary indicators and the regional mean distances as well as the distances to Piedmont from each region.

<table>
<thead>
<tr>
<th>Rank</th>
<th>NUTS</th>
<th>Name</th>
<th>Absorptive Capacity</th>
<th>Innovation System</th>
<th>Digital Agenda</th>
<th>Synthetic Index</th>
<th>Distances to Piedmont</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td>DK01</td>
<td>Hovedstaden</td>
<td>46.2</td>
<td>47.1</td>
<td>24.0</td>
<td>3.68</td>
<td>5.08</td>
</tr>
<tr>
<td>2</td>
<td>FI1B</td>
<td>Helsinki</td>
<td>48.9</td>
<td>50.9</td>
<td>23.6</td>
<td>2.88</td>
<td>4.35</td>
</tr>
<tr>
<td>3</td>
<td>UKI1</td>
<td>Inner London</td>
<td>63.0</td>
<td>59.4</td>
<td>28.4</td>
<td>2.04</td>
<td>1.21</td>
</tr>
<tr>
<td>4</td>
<td>SE11</td>
<td>Stockholm</td>
<td>44.4</td>
<td>50</td>
<td>22.6</td>
<td>2.18</td>
<td>3.77</td>
</tr>
<tr>
<td>5</td>
<td>BE31</td>
<td>Prov. Wallon</td>
<td>51.2</td>
<td>47.9</td>
<td>19.6</td>
<td>3.13</td>
<td>8.92</td>
</tr>
<tr>
<td>262</td>
<td>EL24</td>
<td>Sterea Ellada</td>
<td>17.2</td>
<td>15.5</td>
<td>5.8</td>
<td>0.32</td>
<td>0.44</td>
</tr>
<tr>
<td>263</td>
<td>RO22</td>
<td>Sud-Est</td>
<td>12.2</td>
<td>13.4</td>
<td>5.1</td>
<td>0.07</td>
<td>0.11</td>
</tr>
<tr>
<td>264</td>
<td>RO21</td>
<td>Nord-Est</td>
<td>13.1</td>
<td>14.1</td>
<td>6.5</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>265</td>
<td>EL22</td>
<td>Ionia Nisia</td>
<td>14.7</td>
<td>13.5</td>
<td>5.6</td>
<td>0.13</td>
<td>0.09</td>
</tr>
<tr>
<td>266</td>
<td>RO31</td>
<td>Sud-Muntenia</td>
<td>11.5</td>
<td>12.7</td>
<td>5.3</td>
<td>0.11</td>
<td>0.38</td>
</tr>
<tr>
<td>203</td>
<td>ITC1</td>
<td>Piedmont</td>
<td>15.1</td>
<td>21.9</td>
<td>7.3</td>
<td>1.13</td>
<td>1.88</td>
</tr>
</tbody>
</table>

Tab.1 Elementary indicators, synthetic indices and distances for the 5 top and bottom regions in the regional ranking

(*) Make reference to Table 1 for the alphabetic encoding of the elementary indicators

\(^3\) A technical note describing this collaborative network for Piedmont is available from the authors upon request.
An examination of the table shows that Piedmont is in lower part of the ranking (it ranks 203 out of 266 regions). Weaknesses are more significant for the Absorptive and Digital Agenda profiles. It is worth noting that, overall the best performing regions have higher mean distance values than the regions at the bottom of the ranking. This suggests that the best performing regions are relatively more isolated, as clearly shown in the MDS visualization of Fig.1.

Distances from the best performing regions to Piedmont are also greater those from the worst performing ones.

The map of Fig.1 makes it straightforward to appreciate the regional proximity space, thus providing a richer interpretative lens of the regional smartness profiles. As for Piedmont, for example, it shows that: a) the region is situated in right part of the map, where the less performing regions are grouped; b) the region is far away from the best performing regions many of which stand alone in the left part of the map; c) its surrounding regions are mostly Italian.

When considering the impact of the updated regional distances ED (see eq.2), a quite different layout appears, Fig.2. Not unexpectedly, regions appear more evenly scattered and the regions surrounding Piedmont are also different.

4 A map for each main descriptive profile of regional smartness (absorptive capacity, innovation system and digital agenda) has also been produced and is available from the authors upon request.
Fig. 2 MDS visualization of the distribution of the European regions according to the ED distance matrix (*)

(*) The size of dots is proportional to the value of the Synthetic Index. Blue dots: Italy; pink dots: Germany; yellow dots: France, Green dots: UK; orange dots: Spain.

Changes in the pattern of Fig. 2 can be more easily appreciated by comparing the distributions of the D and ED distance values for Piedmont and for the all regions, whereby the values are ranked from the highest to the lowest value of the regional Synthetic Index, Fig. 3. Their examination shows that the ED distance matrix does make the regions get closer to each other and that the effect seems relatively more accentuated positive for the Piedmont region, Fig. 3a.

If, therefore, we maintain the original argument that regional collaborations would have a positive role in regional convergence processes, it is not unlikely that the FP7-ICT partnerships might have given Piedmont an opportunity to get contacts with the European regions endowed with a comparatively more robust smartness profile, thus giving the region a chance to enhance its own profile.

We expect in fact that as a result of the ED matrix application a shuffling in the regions surrounding Piedmont will occur and tend to bring closer those regions with a more robust smartness profile.

To explore the hypothesis we computed the means of the normalized elementary indicators for the group of regions (those included in the first distribution quartile) closest to Piedmont according to the D and ED distance matrices and compared them with the Piedmont profile.

The results of the investigation are displayed in Fig. 4. They show that the Piedmont Innovation System profile is relatively robust and performs better also after the shuffling. The latter seems to be more successful in bringing Piedmont closer to regions with relatively stronger Absorptive Capacity and Digital Agenda profiles.

3. CONCLUDING REMARKS

This study is a contribution to refine current approaches to the assessment of regional smartness. It contends that sound methodological approaches have an encompassing role in making more sense-able territorial evidence. Methodological refinements in fact can have a positive impact on the recognition of regional smartness profiles and on how to inform smartness policy oriented initiatives in practice.
Fig. 3a Region to Piedmont distances

Fig. 3b Mean regional distances

Fig. 3 Region to Piedmont (D and ED) distances (3a) and of the mean regional (D and ED) distances (3b), by regions ranked by the Synthetic Index value.
This contention ultimately underlies the Europe 2020 strategy and inform several of the key recommendation made by Espon for more effective place-based 2020 policy actions (Espon, 2014). In this respect further work is needed to sharpen the approach, improving the methodological side, i.e. by developing a network centric multi-layered analysis, and gathering a wider set of pertinent relational data. On a broader ground, this paper is, to some extent, a challenge to the current fix about smartness. It suggests a more modest view, one which builds on the contention that, after all, smartness is in the eye of the beholder. Training the ability to see smartness and create the conditions for stakeholders to progressively build it, is therefore, is a major endeavor to be undertaken.

REFERENCES

OVERVIEW OF RESEARCH PROJECTS IN THE ICT DOMAIN 2012

ICT statistical report for annual monitoring (StReAM).

IMAGES SOURCES

Insert here images sources

Fig.1 : Eurostat

Figg. 2, 3, 4: Eurostat, Digital Agenda Scoreboard.

AUTHORS’ PROFILE

Sylvie Occelli

She holds a degree in Architecture and Regional Planning. In 1987 she joined the Piedmont Institute of the Socio-Economic Research Institute where she currently leads a research unit aimed at fostering innovation in public administrations. She has published in various fields of regional science, ranging from housing, transportation, mobility urban modeling and spatial analysis. Current research interests include: road safety policy, socio-technical systems, ICT and regional development and the role of model-based activity as a way to support modernization in policy practices.

Alessandro Sciullo

After graduating in Political Science, in 2003 he obtained a master's degree in Public Policy Analysis. Since then he has worked part in several research projects aimed to support organizational improvement in different Italian governmental bodies. His main research interests are in the field of public administration, ICT diffusion and use among social actors, innovation networks and the relationships between university and enterprises.