New water footprint indicators for urban water cycle

Keywords: water footprint, urban water planning


The Water Footprint - WF is an indicator of anthropogenic pressures on aquatic systems. It is widespread and scholars have developed numerous insights into the virtual water flux activated by the global trade in agricultural and livestock products. In this study the flow of water resources that crosses the urban territories is reviewed through some contributions by researchers of WF and Urban Metabolism. Two new indicators are then developed to measure the phases of the anthropogenic cycle of water, starting from urban consumption. These indicators were then used to measure the urban footprint in Italy calculated as: drinking water consumption and volumes lost due to waterproofing of urban land. The total value of the blueprint of Italian municipalities is estimated at UBW = 5.184ml / m3 / year, while the green footprint is UGW = 1.123.860 ml / m3 / year. The calculation method is proposed so that it can be a useful tool for planners to identify the types of water use in urban areas to develop an bottom up approach.


Download data is not yet available.

Author Biography

Rossana Varriale, Università di Napoli Federico II
Sociologist and Ph.D. in Environmental Systems Analysis at the Department of Earth Sciences (DISTAR) - University of Naples Federico II, (UNINA). She is environmental researcher for companies and public organisms (Montedison Ferruzzi Group - Rome, Ministry of the Environment, Paris, Castalia Group, Rome). She has conducted activities of design and teaching (Ecology Footprint and Environmental Communication) at University Course Energy and Environment, CIRAM, Interdepartmental Center for Environmental Research, University of Naples Federico II.


Agudelo-Vera, C. M., Mels, A. R., Keesman, K. J., & Rijnaarts, H. H. (2011). Resource management as a key factor for sustainable urban planning. Journal of environmental management, 92(10), 2295-2303. doi:

Aldaya, M. M., Chapagain, A. K., Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint assessment manual: Setting the global standard. London, UK: Routledge.

Allan, J. A. (1998). Virtual water: A strategic resource global solutions to regional deficits. Groundwater, 36(4), 545-546. doi:

Baccini, P., & Brunner, P. H. (2012). Metabolism of the anthroposphere: analysis, evaluation, design (2nd ed.). Cambridge, USA: MIT Press.

Censis. (2018). Il valore sociale rilevato del consumo di acque minerali. Retrieved from

Chapagain, A. K., & Tickner, D. (2012). Water footprint: help or hindrance? Water Alternatives, 5(3), 563. Retrieved from

Costanza, R., de Groot, R., Sutton, P., Van der Ploeg, S., Anderson, S. J., Kubiszewski, I., ... & Turner, R. K. (2014). Changes in the global value of ecosystem services. Global environmental change, 26, 152-158. doi:

De Gregorio Hurtado, S., Olazabal, M., Salvia, M., Pietrapertosa, F., Olazabal, E., Geneletti, D., D'Alonzo, V., Di Leo, S., & Reckien, D. (2015). Understanding How and Why Cities Engage with Climate Policy: An Analysis of Local Climate Action in Spain and Italy. Tema. Journal of Land Use, Mobility and Environment, 8, 23-46. doi:

De Paola, F., Giugni, M., Pugliese, F., & Romano, P. (2017). A decision support system for urban stormwater drainage management. European Water, 57, 115-121. Retrieved from

European Union (2015). EU Reference document Good Practices on Leakage Management WFD CIS WG PoM Case Study document. Retrieved from

FAO (2011). The state of the world’s lands and water resource for food and agriculture. Managing systems at risk. Rome, IT and London, UK: Food and Agriculture Organization of the United Nations, Earthscan.

Fiałkiewicz, W., Czaban, S., Kolonko, A., Konieczny, T., Malinowski, P., Manzardo, A., ... & Haida, C. (2014). Water footprint as a new approach to water management in the urban areas. In Z. Dymaczewski, J. Jez-Walkowiak and M. Nowak (Eds.), Water Supply and Water Quality (pp. 431-439). PZITS Poznan. ISBN:9788389696932

Gargiulo, C., & Russo, L. (2017). Cities and energy consumption: a critical review. TeMA. Journal of Land Use, Mobility and Environment, 10(3), 259-278. doi:

Gisotti, G. (2007). Ambiente urbano. Introduzione all’ecologia urbana. Palermo, IT: Dario Flaccovio Editore.

Habitat III (2016). New Urban Agenda. Retrieved from

Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the national academy of sciences, 109(9), 3232-3237. doi:

Kennedy, C., Cuddihy, J., & Engel‐Yan, J. (2007). The changing metabolism of cities. Journal of industrial ecology, 11(2), 43-59. doi:

Lovelock, J. E., & Margulis, L. (1974). Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus, 26(1-2), 2-10. doi:

Ma, D., Xian, C., Zhang, J., Zhang, R., & Ouyang, Z. (2015). The evaluation of water footprints and sustainable water utilization in Beijing. Sustainability, 7(10), 13206-13221. doi:

Manzardo, A., Loss, A., Fialkiewicz, W., Rauch, W., & Scipioni, A. (2016). Methodological proposal to assess the water footprint accounting of direct water use at an urban level: A case study of the Municipality of Vicenza. Ecological indicators, 69, 165-175. doi:

Monstadt, J. (2009). Conceptualizing the political ecology of urban infrastructures: insights from technology and urban studies. Environment and planning A, 41(8), 1924-1942. doi:

Papa, R., Gargiulo, C., & Galderisi, A. (2013). Towards an urban planners’ perspective on smart city. TeMA Journal of Land Use, Mobility and Environment, 6(01), 5-17. doi:

Papa R., Gargiulo C., Russo L., Franco C. (2016). On The Relationship Between The Promotion Of Environmental Sustainability And The Increase Of Territorial Competitiveness: The Italian Case. Urban Regeneration & Sustainability, 295. doi:

Papa, R., Gargiulo, C., & Zucaro, F. (2014). Climate Change and Energy Sustainability. Which Innovations in European Strategies and Plans. Tema. Journal of Land Use, Mobility and Environment, 0. doi:

Ramachandra, T., Aithal, B., & Beas, B. (2014). Urbanisation Pattern of Incipient Mega Region in India. Tema. Journal of Land Use, Mobility and Environment, 7(1), 83-100. doi:

Rushforth, R. R., & Ruddell, B. L. (2015). The hydro-economic interdependency of cities: Virtual water connections of the Phoenix, Arizona Metropolitan Area. Sustainability, 7(7), 8522-8547. doi:

Seyam, I. M., Hoekstra, A. Y., & Savenije, H. H. G. (2003). The water value-flow concept. Physics and Chemistry of the Earth, Parts A/B/C, 28(4-5), 175-182. doi:

Steffen, W., Rockström, J., & Costanza, R. (2011). How Defining Planetary Boundaries Can Transform Our Approach to Growth. Solutions: For A Sustainable & Desirable Future, 2(3), 59-65. Retrieved from


Tiezzi, E., Commoner, B., & Conti, L. (1992). Tempi storici, tempi biologici. Milan, IT: Garzanti.

Varriale, R. (2017). The Urban Footprint in urban territories (Doctoral dissertation). University of Naples Federico II, Naples, Italy.

Wackernagel, M., & Rees, W. (1998). Our ecological footprint: reducing human impact on the earth (Vol. 9). Gabriola Island, CA: New Society Publishers.

Wackernagel, M., Onisto, L., Bello, P., Linares, A. C., Falfán, I. S. L., Garcıa, J. M., ... & Guerrero, M. G. S. (1999). National natural capital accounting with the ecological footprint concept. Ecological economics, 29(3), 375-390. doi:

World Economic Forum (2017). The Global Competitiveness Report 2017-2018. Retrieved from

Vörösmarty, C. J., Hoekstra, A. Y., Bunn, S. E., Conway, D., & Gupta, J. (2015). Fresh water goes global. Science, 349(6247), 478-479. doi:

How to Cite
Varriale, R. (2018). New water footprint indicators for urban water cycle. Tema - Journal of Land Use, Mobility and Environment, 11(3), 345-360.