Cover Image

Measuring walking accessibility to public transport for the elderly: the case of Naples

Enrica Papa, Gerardo Carpentieri, Carmen Guida


Demographic ageing represents an essential challenge for local authorities and public transport providers. Decision-makers should not ignore the speci c needs of this weak segment of the population and should implement appropriate policies. This paper develops a GIS-based method to analyse public transport accessibility of elderly people to support policies and planning strategies. To test the proposed method, we propose an application to the city of Naples in Italy. We selected this study case because it represents an example of high population density, complex urban structure and low level of quality of life, especially for the elderly. The application to the city of Naples showed that the urban accessibility changes dramatically for different age segments. Results also reveal patterns of public transport coverage that are signi cantly low particularly in suburban settings. The structure of this paper is organised into four sections: in the rst section, we introduce the main topic of mobility of elderly; in the second section, we describe and discuss the GIS-based method proposed; in the third section, we report on the application to the city of Naples; in the last section, we analyse the results and discuss future research developments.


Elderly mobility; GIS; public transport system; Accessibility

Full Text:



Aceves-González, C., Cook, S., & May, A. (2015). Bus use in a developing world city: implications for the health and well-being of older passengers. Journal of Transport & Health, 2(2), 308-316. doi:

Alshalalfah, B. W., & Shalaby, A. S. (2007). Relationship of walk access distance to transit with service, travel, and personal characteristics. Journal of urban planning and development, 133, 114. doi:

Bohannon, R. W., & Andrews, A. W. (2011). Normal walking speed: a descriptive meta-analysis. Physiotherapy, 97(3), 182-189. doi:

Buehler, R., & Nobis, C. (2010). Travel behavior in aging societies: Comparison of Germany and the United States. Transportation Research Record: Journal of the Transportation Research Board, (2182), 62-70. doi:

Carpentieri, G., & Favo, F. (2017). The End-use Electric Energy Consumption in Urban Areas: A GIS-based methodology. An application in the city of Naples. Tema. Journal of Land Use, Mobility and Environment, 10(2), 139-156. doi:

City of Naples (2016). Piano Urbano della Mobilità Sostenibile (PUMS) della città di Napoli. Retrieved from

Currie, G., & Delbosc, A. (2010). Exploring public transport usage trends in an ageing population. Transportation, 37(1), 151-164. doi:

Delbosc, A., & Currie, G. (2011). Exploring the relative influences of transport disadvantage and social exclusion on well-being. Transport Policy, 18(4), 555-562. doi:

E. Masoumi, H., & Shaygan, M. (2016). A Longitudinal Analysis of Densities within the Pedestrian Sheds around Metro Stations. The Case of Tehran. Tema. Journal of Land Use, Mobility and Environment, 0, 5-20. doi:

El-Geneidy, A., Grimsrud, M., Wasfi, R., Tétreault, P., & Surprenant-Legault, J. (2013). New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas. Transportation, 41(1), 193-210. doi:

Eurostat (2018). Population structure and ageing. Retrieved from

Fobker, S., & Grotz, R. (2006). Everyday mobility of elderly people in different urban settings: the example of the city of Bonn, Germany. Urban Studies, 43(1), 99-118. doi:

Geurs, K. T., & Van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies: review and research directions. Journal of Transport geography, 12(2), 127-140. doi:

Gutiérrez, J., & García-Palomares, J. C. (2008). Distance-measure impacts on the calculation of transport service areas using GIS. Environment and Planning B: Planning and Design, 35(3), 480-503. doi:

O’Neill, D. (2016). Towards an understanding of the full spectrum of travel-related injuries among older people. Journal of Transport & Health, 3(1), 21-25. doi:

Kibambe Lubamba, J. P., Radoux, J., & Defourny, P. (2013). Multimodal accessibility modeling from coarse transportation networks in Africa. International Journal of Geographical Information Science, 27(5), 1005-1022. doi:

Morency, C., Paez, A., Roorda, M. J., Mercado, R., & Farber, S. (2011). Distance traveled in three Canadian cities: Spatial analysis from the perspective of vulnerable population segments. Journal of Transport Geography, 19(1), 39-50. doi:

Papa, E., Carpentieri, G., & Angiello, G. (2018). A TOD Classification of Metro Stations: An Application in Naples. In Smart Planning: Sustainability and Mobility in the Age of Change (pp. 285-300). Springer, Cham. doi:

Páez, A., Scott, D., Potoglou, D., Kanaroglou, P., & Newbold, K. B. (2007). Elderly mobility: demographic and spatial analysis of trip making in the Hamilton CMA, Canada. Urban Studies, 44(1), 123-146. doi:

Pharoah, T.(2018). Buses in Urban Developments. Chartered Institution of Highways & Transportation. Retrieved from

Poelman, H., & Dijkstra, L. (2015). Measuring access to public transport in European cities. European Commission, Regional and Urban Policy. Retrieved from 2015_01_publ_transp.pdf

Ryan, J., Wretstrand, A., & Schmidt, S. M. (2015). Exploring public transport as an element of older persons' mobility: A Capability Approach perspective. Journal of transport geography, 48, 105-114. doi: j.jtrangeo.2015.08.016

Saghapour, T., Moridpour, S., & Thompson, R. G. (2016). Public transport accessibility in metropolitan areas: A new approach incorporating population density. Journal of Transport Geography, 54, 273-285. doi: 10.1016/j.jtrangeo.2016.06.019

Salata, K., & Yiannakou, A. (2016). Green Infrastructure and climate change adaptation. Tema. Journal of Land Use, Mobility and Environment, 9(1), 7-24. doi:

Voss, C., Sims-Gould, J., Ashe, M. C., McKay, H. A., Pugh, C., & Winters, M. (2016). Public transit use and physical activity in community-dwelling older adults: Combining GPS and accelerometry to assess transportation-related physical activity. Journal of Transport & Health, 3(2), 191-199. doi:

Wang, J., & Cao, X. (2017). Exploring built environment correlates of walking distance of transit egress in the Twin Cities. Journal of Transport Geography, 64, 132-138. doi: ttps://

Weber, D. (2016). Differences in physical aging measured by walking speed: evidence from the English Longitudinal Study of Ageing. BMC geriatrics, 16(1), 31. doi:

Weinstein Agrawal, A., Schlossberg, M., & Irvin, K. (2008). How far, by which route and why? A spatial analysis of pedestrian preference. Journal of urban design, 13(1), 81-98. doi:

Zhao, F., Chow, L. F., Li, M. T., Ubaka, I., & Gan, A. (2003). Forecasting transit walk accessibility: Regression model alternative to buffer method. Transportation Research Record: Journal of the Transportation Research Board, (1835), 34-41. doi:


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This site uses cookies to help deliver services. By using this site, you agree to the use of cookies.
More info.

Direttore responsabile: Rocco Papa | print ISSN 1970-9889 | on line ISSN 1970-9870 | © 2008 | Registrazione: Cancelleria del Tribunale di Napoli, n° 6, 29/01/2008 | Rivista realizzata con Open Journal System e pubblicata dal Centro di Ateneo per le Biblioteche dell'Università di Napoli Federico II.